
Ensure that Input Is Properly Canonicalized 1
ID: 331-BSI | Version: 7 | Date: 11/14/08 5:02:19 PM

Ensure that Input Is Properly Canonicalized
William L. Fithen, Software Engineering Institute [vita3]

Copyright © 2005 Carnegie Mellon University

2005-10-03 L4 / D/P4

Failure to canonicalize input can introduce vulnerability. Inadvertently canonicalizing input multiple times
can introduce vulnerability.

Description
Canonicalization is the process of transforming a potentially flexible data structure into one that has
guaranteed characteristics. It is a frequent technique for input data validation. For example, the same input
data "characters" can be encoded in many ways, ranging from 7-bit ASCII to variable-width multibyte
Unicode. Before a program that accepts such input uses it, it is frequently required that the input be
transformed into some canonical form that is universal (in the context of the program). Otherwise, even
simple text comparisons (e.g., length, equal, ordering) cannot be made.

For extensive coverage of this issue see [Howard 025 Chapter 10: All Input Is Evil!6].

Failure to Canonicalize (When It Was Needed)
When input with identical semantics can be supplied in multiple syntaxes, then it is usually wise to define
one of the syntaxes as "canonical" and transform all of the other representations into that one before using

the input. Even better is to disallow all input that is not canonical [Hoglund 047].8

Redundant Canonicalization (Which Is Not Idempotent)

When canonicalization of input is required, be sure that it only occurs once.9 In many representations, it is

not safe to canonicalize already canonicalized input [VU#58029910].

References

[Hoglund 04] Hoglund, Greg & McGraw, Gary. Exploiting Software: How to Break Code.
Boston, MA: Addison-Wesley, 2004.

[Howard 02] Howard, Michael & LeBlanc, David. Writing Secure Code. 2nd. Redmond, WA:
Microsoft Press, 2002.

[VU#580299] MacInnis, Ken. Vulnerability Note VU#580299: Microsoft Internet Explorer
contains URL decoding cross-domain vulnerability. June 14, 2005. http://
www.kb.cert.org/vuls/id/580299.

3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/320-BSI.html (Fithen, William L.)
5. #dsy331-BSI_Howard-02
6. http://www.microsoft.com/mspress/books/sampchap/5957.asp#SampleChapter
7. https://buildsecurityin.preview.us-cert.gov/daisy/bsi/articles/knowledge/guidelines/331/

edit/39405b5e8457707b4d313e3d382d1e806873303d/part-article-body#Hoglund-04
8. This can sometime be difficult when the input data is some other system's input or output and that system defines multiple

representations as being legal. Examples include: DNS hostnames, IP addresses, path names in filesystems, and even numerical
values.

9. It is possible to define canonical forms that can be redundantly canonicalized without damage. For example, removing leading
zeroes from integer values or removing "../" and "./" sequences from filesystem path names can be performed multiple times
without harm.

10. #dsy331-BSI_VU-580299

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/320-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html
#dsy331-BSI_Howard-02
http://www.microsoft.com/mspress/books/sampchap/5957.asp#SampleChapter
https://buildsecurityin.preview.us-cert.gov/daisy/bsi/articles/knowledge/guidelines/331/edit/39405b5e8457707b4d313e3d382d1e806873303d/part-article-body#Hoglund-04
#dsy331-BSI_VU-580299
http://www.kb.cert.org/vuls/id/580299
http://www.kb.cert.org/vuls/id/580299

Ensure that Input Is Properly Canonicalized 2
ID: 331-BSI | Version: 7 | Date: 11/14/08 5:02:19 PM

Carnegie Mellon Copyright
Copyright © Carnegie Mellon University 2005-2010.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

1. mailto:permission@sei.cmu.edu

mailto:permission@sei.cmu.edu

